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INTRODU CT ION

The recent recognition of the important role played by gravity waves in

the large-scale circulation and thermal structure of the mesosphere and lower

thermosphere (HOUGHTON, 1978; LINDZEN, 1981) has stimulated considerable

research on their properties and their middle atmosphere effects. For example,

these studies have begun to provide important information on gravity wave

scales, propagation, filtering, and the processes responsible for saturation

and turbulent diffusion. There remain, however, many areas in which our cur-

rent understanding of middle atmosphere gravity waves is deficient. The

purposes of this paper are to review the progress that has been made to date

and to suggest areas in which additional studies are most needed.

Major motivations for studies of gravity waves in the middle atmosphere,

of course, are the roles of such motions in providing both a drag on the large-

scale flow and a turbulent diffusion that acts on the heat and constituent

distributions as well as the need to incorporate these effects in dynamical,

chemical, and radiative models of these regions. In the mesosphere and lower

thermosphere, gravity-wave drag results in a reversal of the vertical shear of

the zorml mean wind, driving a strong mean meridional circulation and a

reversal of the mean meridional temperature gradient near the mesopause. The

effects of gravity-wave drag in the stratosphere, while not as significant as

at higher levels, appear to be important nevertheless in maintaining the large-

scale circulation of this region. Likewise, turbulent diffusion due to gravity

wave saturation contributes significantly to maintenance of the heat and con-

stituent distributions in the mesosphere and lower thermosphere and may be

important in the stratosphere as well. The theory and observations relating to

gravity-wave saturation were reviewed by FRITTS (1984).

RECENT PROGRESS IN GRAVITY-WAVE STUDIES

A number of studies in the last few years have addressed various aspects

of gravity-wave propagation, saturation, and effects in the middle atmosphere.

As a result, we are beginning to understand in more detail the role of gravity

waves in middle atmosphere dynamics. Several studies have examined gravity-

wave scales and phase speeds, yielding an indication of those wave motions that

are likely to be most important in the middle atmosphere (VINCENT and REID;

1983; SMITH and FRITTS, 1983; MEEK et al., 1985a). Typical motions were found

to have horizontal wavelengths that range from _ I0 to 103 km, observed

periods of % I0 to 103 min, and phase speeds of _ I0 to 102 ms -I. In

most cases, these values were associated with wave motions having vertical

scales _ I0 km due to resolution constraints of the various observing syst_ns.

There is also evidence, however, of motions with much smaller vertical scales,

and likely much smaller horizontal scales and phase speeds as well, from high-

resolution rocket, radar, and balloon soundings of the stratosphere, meso-

sphere, and lower thermosphere (PHILBRICK et al., 1983; FRITTS et al., 1985;

SATO and WOODMAN, 1982a; BARAT, 1983; and others).
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Otherstudies have examined the mechanisms responsible for gravity-wave

saturation in the middle atmosphere and the amplitude limits implied by these

mechanisms. The dominant saturation mechanisms appear to be convective and

dynamical instabilities, with nonlinear wave-wave interactions contributing,

perhaps, at small vertical scales (FRITTS and RASTOGI, 1985). These wave field

instabilities seem to limit wave amplitudes, as assumed by HODGES (1967) and

LINDZEN (1981), but to amplitudes somewhat smaller than monochromatic

saturation values due to wave superposition (ORLANSKI and CERASOLI, 1981;

FRITTS, 1985). Indeed, the amplitude limits imposed by saturation appear now

to account for the shape of the vertical wave number spectrum of gravity-wave

motions (DEWAN and GOOD, 1985; SMITH et al., 1985) and thus may explain the

apparent universality of the atmospheric motion spectrum (VANZANDT, 1982).

These studies have also shown the gravity-wave spectrum to be saturated

throughout the lower and middle atmosphere, with a characteristic vertical

scale and energy that increase with height (SMITH et al., 1985).

We are also beginning to understand the processes responsible for turbu-

lence production and turbulent diffusion. These are the convective and dynam-

ical instabilities mentioned above, and they appear, in many instances at

least, to result in the generation of strong, local turbulence at preferred

locations within the wavefield (SATO and WOODMAN, 1982b; BALSLEY et al., 1983;

BARAT, 1983; COT and BARAT, 1985; FRITTS et al., 1985). The convective insta-

bility is thought to predominate for high-frequency wave motions (with _ >> f)

while the dynamical instability appears more likely for low-frequency motions

(with _ _ f). In either case, the wave motion is believed to be most unstable

where T ' is a minimum rather than where u ' is a maximum (FRITTS and

RASTOGI z 1985). The resulting distributio z of turbulence throughout the wave

field appears to result in a large turbulent Prandtl number (JUSTUS, 1967) and

a reduction of the effective turbulent diffusion of heat and constituents due

to gravity-wave saturation (FRITTS and DUI_ERTON, 1985; STROBEL et al., 1985).

Finally, recent studies have begun to address the distributions of gravity

wave energies and momentum fluxes with height and time. Studies of the former

by MEEK et al. (1985b) and VINCENT and FRITTS (1986) suggest significant

seasonal variations as well as short-term fluctuations. The seasonal

variations of gravity-wave energies correlate well both with variations in the

turbulent diffusion of HpO inferred from SME 0q fluctuations (THOMAS et

al., 1984) and with obsegved seasonal variations of turbulence intensities

(Vincent, private communication, 1985). Short-term fluctuations appear to cor-

relate with variations in the mean winds at lower levels.

Observational studies of gravity-wave momentum fluxes by VINCENT and REID

(1983), REID (1984), and FRITTS and VINCENT (1985) have provided estimates of

zonal accelerations due to gravity-wave drag _-50 ms-lday -I, largely con-

sistent with expectations based on the observed zonal wind structure (HOLTON,

1983). In addition, the latter studies have found considerable variability of

the momentum flux due to high-frequency gravity waves with time-of-day, sug-

gesting a modulation of this flux by tidal motions. A model of the modulation

and of its implications for mean flow accelerations and tidal measurements was

proposed by FRITTS and VINCENT (1985). This study also found the majority

(_ 70%) of the gravity-wave momentum flux and flux divergence to be associated

with motions with periods < 1 hr, suggesting that the dominant flux is due to

motions with small horizontal scales as well (VINCENT and REID, 1983).

NEEDED STUDIES

The gravity-wave studies described above have contributed substantially to

our knowledge of the role of such motions in middle atmosphere dynamics. How-

ever, there remains a great deal that is unknown or poorly known concerning

gravity-wave propagation, saturation, and effects in the middle atmosphere.
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The purpose of this section is to highlight several areas in which our

knowledge is particularly limited.

As noted above, some attention has focused on the dominant gravity-wave

scales in the middle atmosphere, but the identified motions number only _ I00.

And because these studies were performed at only a few locations, the results

may not be representative of the global gravity-wave distribution. Most

observational facilities are located in or near mountainous terrain, which

might bias wavelength and/or phase speed distributions. Preliminary motion

spectra in the equatorial Pacific, for example, exhibit a somewhat different

character than those obtained over significant topography (BALSLEY, personal

communication, 1985).

The character of the gravity-wave spectrum will have a maj or influence on

the response of the middle atmosphere, however, and should serve to motivate

additio_l studies of this sort, hopefully representing a more diverse global

coverage than is presently available. An indication of the geographic

variability of gravity-wave sources and of the middle atmosphere response is

provided by the model studies of MIYAHARA et al. (1985), which show consider-

able variability in the gravity-wave momentum flux extending to upper levels

due to localized regions of convective activity. And this is in a model that

does not resolve what are now thought to be the dominant temporal and spatial

scales (FRITTS, 1984). Presumably, smaller spatial scales would produce even

more localized middle atmosphere effects.

Other areas of major uncertainty are the causes and effects of variability

of the gravity-wave spectrum. Variability imposed by planetary-wave motions

were examined by DUNKERTON and BUTCHART (1984), HOLTON (1984), SCHOEBERL and

STROBEL (1984), and MIYAHARA et al. (1985). Observational studies have

likewise provided evidence of considerable variability of gravity-wave

energies, momentum fluxes, and turbulent diffusion (REID, 1984; THOMAS et al.,

1984; MEEK et al., 1985b; VINCENT and FRITTS, 1986; FRITTS and VINCENT, 1985;

FRITTS et al., 1985). Yet our knowledge of these processes remains primitive

due to the extremely limited observations. Of particular importance, perhaps,

are observations addressing the variability due to gravity-wave sources and

filtering, as these appear to operate on the planetary-wave scales of relevance

to the middle atmosphere circulation and structure.

Another area requiring additional study is the generation and subsequent

evolution of turbulence resulting from gravity-wave saturation. Again, while

preliminary studies of the mechanisms responsible for turbulence generation

have been performed, we know little about either the primary products of tur-

bulence decay (secondary gravity waves, 2-D turbulence, or heat), and thus

their role in middle atmosphere dynamics, or the role of such turbulence in the

diffusion of heat and constituents.

Finally, our understanding of the role of nonzonally propagating gravity

waves is very limited. Most numerical and observational studies to date have

considered primarily zonal propagation in zonal flows. Yet there is no reason

to suppose that meridionally propagating motions are not equally important.

Indeed, studies by SMITH and FRITTS (1983), MEEK et al. (1985a), and VINCENT

and FRITTS (198_) indicate that meridional propagation may be preferred, per-

haps due to zonal filtering by large zonal winds.

Thus, there are numerous valuable studies remaining to be done which may

keep us all busy for quite some time.
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TOPIC 3 SUMMARY: GRAVITY WAVES AND TURBULENCE

Papers presented in this session revealed that we have made considerable

progress in understanding a number of important problems concerning gravity

wave and turbulence processes in the lower and middle atmosphere since the last

MST workshop. Advances were made in understanding the spectral description of

the motion field, including the effects of anisotropy and Doppler shifting on

gravity-wave spectra, the mechanisms leading to saturation and their effects on

wave amplitudes and turbulence intensities, and the causes of the apparent

universality of the gravity-wave spectrum and the variation of this spectrum

with height. Other studies revealed significant variability of gravity-wave

and turbulence paraneters and effects, on small to large (annual) temporal

scales, associated with changing forcing conditions or propagation environ-

ments. Of particular significance in this regard were annual climatologies

of gravity-wave energy and turbulence intensity in the mesosphere suggesting

a reduction of turbulent diffusion during equinoxes. Evidence was also pro-

vided that the more dynamically significant gravity-wave motions (in terms of

energy and momentum transports) are those with small horizontal wavelengths

(< 200 kin) and high intrinsic frequencies. Finally, a number of studies

addressed characteristic gravity-wave and turbulence parameters and their

variability as well as various means to distinguish between gravity-wave and
turbulence motions.

Despite recent progress in understanding gravity-wave and turbulence

processes, there remains much that is not known about these motions, their

variability, and their effects in the lower and middle atmosphere.

Particularly important in this regard are studies (both case studies and

climatologies) that address gravity-wave sources, including the dominant

temporal and spatial scales and phase speeds, and their long- and short-term

variability.



It is important to examine, with whatever systems are available, the

climatologies and variability of gravity-wave energy and momentum fluxes and

the role of turbulence in the diffusion of heat and constituents throughout the

atmosphere. A major factor in the annual climatologies of gravity waves and

turbulence in the mesosphere, and one requiring considerable study, is the

filtering of the gravity-wave spectrum by local mean winds at lower levels,

which causes significant modulations in the energy and momentum fluxes (and in

the associated turbulent diffusivities) at higher levels.

The momentum flux divergence due to gravity waves is also likely to be

important in the upper troposphere and stratosphere, though the magnitude is

expected to be much smaller on average than in the mesosphere and contributions

due to various sources may be very localized. This requires high-resolution

observations capable of inferring these contributions in a wide range of

conditions and locations. It is also important to exercise care in estimating

the momentum flux due to mountain waves as these motions are nearly stationary

and may not be able to be studied using the dualbeam technique on short time

scal es.

In addition, further studies are required of the mechanisms and effects

of gravity-wave saturation and of the evolution of the motion spectrum by

processes other than gravity-wave filtering. With a little luck, our progress

in understanding these motions in the next two years will be as significant as

in the last twol


